RISIKO MAGANG MAHASISWA DENGAN PENDEKATAN ALGORITMA CONTENT-BASED FILTERING DAN SUPPORT VECTOR MACHINE
DOI:
https://doi.org/10.36618/competitive.v20i1.4195Keywords:
Risiko, Content-Based Filtering, Support Vector Machine, MagangAbstract
Penelitian ini menggunakan pendekatan kuantitatif untuk mengkaji penggunaan algoritma Content-Based Filtering (CBF) dan Support Vector Machine (SVM) dalam manajemen risiko magang mahasiswa. Metode penelitian yang digunakan adalah Crisp-DM (Cross-Industry Standard Process for Data Mining) yang membantu peneliti mengorganisasikan dan menganalisis data dengan langkah-langkah yang terstruktur. Dalam penelitian ini, peneliti mengumpulkan data dengan menggunakan kuesioner yang dirancang khusus yang bertujuan untuk memperoleh informasi mengenai risiko-risiko yang mungkin terjadi selama mahasiswa magang di perusahaan, faktor-faktor yang mempengaruhi keberhasilannya, dan bagaimana algoritma CBF dan SVM dapat digunakan untuk menganalisis risiko. Dengan menggunakan pendekatan kuantitatif dan Crisp-DM, penelitian ini bertujuan untuk memberikan informasi yang objektif dan terukur tentang penggunaan algoritma CBF dan SVM dalam manajemen risiko magang mahasiswa. Diharapkan penelitian ini dapat memberikan pemahaman yang lebih baik tentang bagaimana algoritma CBF dan SVM dapat membantu mengelola risiko dalam magang mahasiswa. Hasil penelitian ini juga diharapkan dapat memberikan saran praktis kepada organisasi yang lebih baik.
References
A, J. A. (2020). Analyzing and Predicting Career Specialization using Classification Techniques. International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 342–348. https://doi.org/10.30534/ijatcse/2020/5391.32020
Babatunde, R., Abdulsalam, S. O., Abdulsalam, O. A., & Arowolo, M. O. (2023). Classification of customer churn prediction model for telecommunication industry using analysis of variance. IAES International Journal of Artificial Intelligence, 12(3), 1323–1329. https://doi.org/10.11591/ijai.v12.i3.pp1323-1329
Bawica, I. M. (2021). The Effects of Internship Program on the Employability Readiness. International Journal of Academe and Industry Research, 2(3), 86–101. https://doi.org/10.53378/348731
Enke, E. J. F. L., Martens, M. L., Martens, C. D. P., Enke, D. B. S., Contador, J. C., Bachim, T., Coutinho, A. dos R., & Satyro, W. C. (2021). Critical success factors in university-industry collaboration: a bibliometric analysis. Research, Society and Development, 10(13), e248101321316. https://doi.org/10.33448/rsd-v10i13.21316
Galbraith, D., & Mondal, S. (2020). The potential power of internships and the impact on career preparation. Research in Higher Education Journal, 38, 1–9.
Hashim, S., & Waden, J. (2023). Content-based filtering algorithm in social media. Wasit Journal of Computer and Mathematics Science, 2(1), 14–17. https://doi.org/10.31185/wjcm.112
Hia, L. M., Oktavianus, S., Sidebang, S. K., & Kuang, T. M. (2023). Dampak Magang Merdeka Belajar Kampus Merdeka Bagi Mahasiswa Akuntansi. Owner, 7(4), 2796–2806. https://doi.org/10.33395/owner.v7i4.1675
Ismail, I., Hasan, H., & Musdalifah, M. (2018). Pengembangan Kompetensi Mahasiswa Melalui Efektivitas Program Magang Kependidikan. Edumaspul: Jurnal Pendidikan, 2(1), 124–132. https://doi.org/10.33487/edumaspul.v2i1.48
Jasim, K., & Asif, M. (2023). Movie Recommendation Systems Using Content-Based Filtering. International Research Journal of Modernization in Engineering Technology and Science, 06, 3892–3902. https://doi.org/10.56726/irjmets42626
Krechowicz, M. (2022). Towards Sustainable Project Management: Evaluation of Relationship-Specific Risks and Risk Determinants Threatening to Achieve the Intended Benefit of Interorganizational Cooperation in Engineering Projects. Sustainability (Switzerland), 14(5). https://doi.org/10.3390/su14052961
Marinakou, E. (2020). Hotel internships and student satisfaction as key determinant to career intention. Journal of Tourism Research, 25, 42.
Odlin, D., Benson-Rea, M., & Sullivan-Taylor, B. (2022). Student internships and work placements: approaches to risk management in higher education. Higher Education, 83(6), 1409–1429. https://doi.org/10.1007/s10734-021-00749-w
Olasehinde, O., Abiona, A. A., Johnson, O. V., & Omilegan, D. (2022). Design and Implementation of a Web-Based Internship Placement Recommendation System: A Case Study of Federal Polytechnic, Ile-Oluji, Nigeria. International Journal of Scientific & Engineering Research, 13(March), 398–409.
Phuong, H. Y., Le, T. T., Ho, P. T., & Do, T. N. (2023). English Major Undergraduates’ Unsatisfactory Practicum Experience: A Case Study in Vietnam. Vietnam Journal of Education, 7(1), 38–47. https://doi.org/10.52296/vje.2023.244
Poncio, F. P. (2024). Navigating techniques in job recommender systems on internship profile matching: a systematic review. Journal of Research in Innovative Teaching and Learning, 17(2), 352–367. https://doi.org/10.1108/JRIT-01-2024-0016
Rethinking Graduate Employability in Context. (2023). In Rethinking Graduate Employability in Context. https://doi.org/10.1007/978-3-031-20653-5
Rodríguez-Pérez, R., & Bajorath, J. (2022). Evolution of Support Vector Machine and Regression Modeling in Chemoinformatics and Drug Discovery. Journal of Computer-Aided Molecular Design, 36(5), 355–362. https://doi.org/10.1007/s10822-022-00442-9
Saidani, O., Menzli, L. J., Ksibi, A., Alturki, N., & Alluhaidan, A. S. (2022). Predicting Student Employability Through the Internship Context Using Gradient Boosting Models. IEEE Access, 10, 46472–46489. https://doi.org/10.1109/ACCESS.2022.3170421
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Competitive

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.