
 Vol. 16, No. 1, April 2024

IMPROVE

SSN(e): -/ ISSN(p) : 1979-8342

 26

 Software Quality Assurance (SQA) dalam

Rekayasa Perangkat Lunak Modern
Muhammad Ibnu Choldun Rachmatullah1

1 D3 Manajemen Informatika, Universitas Logistik dan Bisnis Internasional

1muhammadibnucholdun@ulbi.ac.id

Abstrak— Software Quality Assurance (SQA) merupakan

disiplin yang memastikan proses, produk, dan layanan perangkat

lunak memenuhi kebutuhan pemangku kepentingan melalui

kombinasi pendekatan proses, standar kualitas, pengukuran,

verifikasi–validasi, dan tata kelola perubahan. Dalam periode

2020–2024, SQA mengalami pergeseran paradigma yang kuat:

dari model “quality gate” yang cenderung berada di akhir siklus

menjadi “quality-as-code” yang tertanam dalam pipeline CI/CD,

didorong oleh Agile/DevOps, otomasi pengujian, observabilitas,

serta kebutuhan kualitas untuk sistem kompleks seperti

microservices dan AI-based software. Artikel review ini

merangkum konsep inti SQA, evolusi praktiknya, integrasi

dengan standar kualitas (mis. ISO/IEC 25010:2023), tren platform

SQA berbasis layanan (SQAaaS), dan temuan-temuan literatur

mutakhir terkait faktor sukses DevOps, otomasi pengujian, metrik

kualitas, serta tantangan kualitas khusus pada perangkat lunak

berbasis AI. Rangkaian pembahasan menekankan keterkaitan

antara definisi kualitas, strategi pengendalian proses, pemilihan

metrik, dan mekanisme umpan balik yang berkesinambungan agar

kualitas dapat dikelola sebagai sistem sosio-teknis, bukan sekadar

aktivitas pengujian.

Kata kunci— Software Quality Assurance, kualitas, metrik

Abstract— Software Quality Assurance (SQA) is a discipline that

ensures software processes, products, and services meet

stakeholder needs through a combination of process approaches,

quality standards, measurement, verification–validation, and

change governance. In the 2020–2024 period, SQA is undergoing

a strong paradigm shift: from a “quality gate” model that tends

to be at the end of the lifecycle to “quality-as-code” embedded in

CI/CD pipelines, driven by Agile/DevOps, test automation,

observability, and the quality requirements for complex systems

such as microservices and AI-based software. This review article

summarizes the core concepts of SQA, the evolution of its

practices, integration with quality standards (e.g., ISO/IEC

25010:2023), trends in service-based SQA (SQAaaS) platforms,

and recent literature findings on DevOps success factors, test

automation, quality metrics, and specific quality challenges in AI-

based software. The series of discussions emphasizes the

relationship between the definition of quality, process control

strategies, selection of metrics, and continuous feedback

mechanisms so that quality can be managed as a socio-technical

system, not just a testing activity..

Keywords— Software Quality Assurance, quality, metrics

I. PENDAHULUAN

Kualitas perangkat lunak tidak lagi dipahami hanya

sebagai “bebas bug”, melainkan sebagai kemampuan

sistem untuk memberikan nilai dalam konteks penggunaan

nyata, mencakup aspek fungsional, kinerja, reliabilitas,

keamanan, kemudahan interaksi, serta kemampuan

berevolusi ketika kebutuhan berubah. Perubahan

ekspektasi pengguna, akselerasi rilis, dan meningkatnya

ketergantungan layanan digital menjadikan kualitas bukan

sekadar tujuan teknis, melainkan komitmen organisasi

yang memengaruhi reputasi, kepatuhan, dan keberlanjutan

bisnis. Dalam konteks ini, Software Quality Assurance

(SQA) berperan sebagai pendekatan sistematis untuk

memastikan kualitas dibangun sejak awal melalui

pengendalian proses, bukti pengujian, dan evaluasi

berbasis metrik yang dapat diaudit.

Selama bertahun-tahun, praktik SQA sering

dipersepsikan identik dengan aktivitas pengujian, terutama

pengujian fungsional menjelang rilis. Namun, literatur

modern menunjukkan bahwa pengujian hanya salah satu

komponen dari SQA. SQA mencakup kebijakan, standar,

prosedur, audit internal, manajemen konfigurasi,

pengukuran kualitas, serta mekanisme perbaikan

berkelanjutan. Pada organisasi yang mengadopsi

Agile/DevOps, SQA juga berubah menjadi aktivitas yang

melekat pada pipeline pengembangan: kualitas dipantau

terus-menerus, risiko diidentifikasi lebih dini, dan kontrol

kualitas menjadi otomatis dan dapat direproduksi.

Perubahan besar pada 2020–2024 terjadi karena dua

tekanan utama. Pertama, tuntutan time-to-market yang

cepat memaksa organisasi untuk mengintegrasikan kontrol

kualitas ke dalam CI/CD agar rilis sering tetap aman.

Temuan dari systematic literature review tentang critical

success factors (CSF) DevOps memperlihatkan bahwa

keberhasilan DevOps sangat terkait dengan kemampuan

membangun umpan balik cepat, otomasi, serta praktik

lintas fungsi yang menstabilkan kualitas dalam ritme rilis

yang padat [4]. Kedua, meningkatnya kompleksitas

sistem—microservices, cloud-native, dependensi pihak

ketiga, dan AI-based software—membuat definisi

“kualitas” semakin multi-dimensi dan kontekstual.

ISO/IEC 25010:2023 memperbarui model kualitas produk

perangkat lunak menjadi sembilan karakteristik yang dapat

27

menjadi acuan dalam spesifikasi, pengukuran, dan evaluasi

kualitas sepanjang siklus hidup [1]. Hal ini memperlihatkan

bahwa SQA modern membutuhkan kerangka kualitas yang

lebih kaya daripada sekadar daftar bug.

Selain itu, munculnya platform dan layanan kualitas

seperti Software Quality Assurance as a Service (SQAaaS)

menandai tren industrialisasi SQA dalam skala luas.

Bernardo dkk. memperkenalkan konsep SQAaaS yang

memfasilitasi asesmen otomatis metrik kualitas dan

baseline standar, termasuk integrasi pembuatan pipeline

CI/CD untuk pengujian otomatis serta pemberian “digital

badges” sebagai insentif pemenuhan baseline kualitas [2].

Dengan demikian, SQA tidak hanya menjadi aktivitas

internal tim, tetapi juga dapat menjadi ekosistem layanan

yang memperkuat transparansi, reproducibility, dan

governance kualitas.

Namun, evolusi SQA juga memunculkan pertanyaan

metodologis: bagaimana menilai bukti kualitas secara

rigor, bagaimana memilih metrik yang benar-benar

merepresentasikan kualitas, dan bagaimana menghindari

“metric gaming” atau optimasi semu. Dalam konteks riset

software engineering, studi Yang dkk. tentang quality

assessment (QA) pada systematic literature reviews

menekankan pentingnya prosedur penilaian kualitas bukti

yang konsisten dan instrumen QA yang lebih beragam serta

rigor, karena kesimpulan sangat bergantung pada kualitas

studi yang ditinjau [3]. Walau fokusnya QA pada riset,

prinsip dasarnya relevan untuk SQA: kualitas keputusan

hanya sebaik kualitas bukti yang dikumpulkan.

Berdasarkan latar tersebut, artikel ini disusun sebagai

review terstruktur empat bab untuk: (1) membangun

fondasi konseptual SQA dan hubungannya dengan model

kualitas; (2) menjelaskan praktik SQA modern dalam

Agile/DevOps dan otomasi; (3) membahas pengukuran,

platform, serta tantangan mutakhir termasuk AI-based

software; dan (4) merumuskan kesimpulan serta arah riset

dan implementasi ke depan.

II. LANDASAN KONSEPTUAL SQA DAN EVOLUSI

KERANGKA KUALITAS

Secara prinsip, SQA adalah serangkaian aktivitas

terencana dan sistematis untuk memberikan keyakinan

(assurance) bahwa proses dan produk perangkat lunak

memenuhi persyaratan kualitas. “Assurance” berbeda dari

“control”: quality control cenderung berfokus pada deteksi

cacat pada output, sedangkan quality assurance berfokus

pada pencegahan cacat melalui proses yang benar, standar

yang jelas, dan mekanisme audit yang dapat menunjukkan

bahwa pekerjaan dilakukan sesuai kebijakan. Karena

perangkat lunak adalah artefak yang mudah berubah, SQA

harus memadukan kontrol proses dan kontrol evolusi,

sehingga kualitas bukan kondisi statis melainkan

kemampuan sistem mempertahankan performa dan

reliabilitas di tengah perubahan.

Kerangka kualitas menjadi pusat SQA karena “kualitas”

hanya dapat dikelola jika didefinisikan. ISO/IEC

25010:2023 menawarkan model kualitas produk yang

dapat diterapkan pada produk TIK dan perangkat lunak,

dan ditujukan untuk spesifikasi kebutuhan, pengukuran,

dan evaluasi [1]. Dalam praktik SQA, model ini dapat

digunakan untuk menerjemahkan tuntutan stakeholder

menjadi karakteristik dan sub-karakteristik yang terukur.

Yang penting, standar tersebut menegaskan model kualitas

dapat dimanfaatkan oleh berbagai pihak—pengembang,

pembeli, staf QA/QC, hingga evaluator independen—dan

relevan sepanjang lifecycle, mulai dari elisitasi kebutuhan

hingga kriteria penerimaan [1]. Artinya, SQA modern

idealnya mengikat definisi kualitas dengan artefak

operasional: user story, acceptance criteria, test plan, non-

functional requirements, dan metrik pemantauan.

Evolusi Agile dan DevOps mengubah lokasi dan ritme

SQA. Pada pendekatan tradisional, SQA sering dipusatkan

pada fase verifikasi akhir, mengikuti konsep “test after

build”. Agile mendorong iterasi pendek, sehingga SQA

harus memfasilitasi feedback cepat, definisi “done” yang

konsisten, dan pengujian berlapis sejak awal sprint.

DevOps memperluasnya dengan memasukkan operasi

(monitoring, incident response) sebagai bagian dari quality

loop. Studi CSF DevOps menunjukkan keberhasilan

DevOps terkait faktor teknis, organisasi, serta sosial-

budaya; keberhasilan tidak hanya ditentukan oleh

toolchain, tetapi juga kolaborasi lintas tim, standardisasi

proses tertentu, dan kualitas umpan balik yang mengalir

dari produksi ke pengembangan [4]. Dari sudut SQA, hal

ini berarti “assurance” mencakup kualitas perilaku

organisasi: apakah proses mampu mengubah sinyal

produksi menjadi perbaikan terstruktur.

Seiring meningkatnya kompleksitas sistem, SQA juga

bergeser dari fokus tunggal pada pengujian fungsional

menuju kualitas multi-aspek. Dalam domain pengujian,

literature review tentang software product line (SPL)

testing menggambarkan tantangan sistem konfigurasi

tinggi: pengujian harus mempertimbangkan variasi fitur,

biaya pengujian, serta non-functional testing yang sering

belum tercakup memadai [6]. Ini memperlihatkan bahwa

SQA menghadapi keterbatasan klasik: ruang uji yang

eksplosif, keterbatasan sumber daya, dan kebutuhan

strategi seleksi–prioritisasi pengujian. Karena itu, SQA

modern bergantung pada teknik seleksi risiko, otomasi

cerdas, dan metrik untuk memandu trade-off.

Pengukuran kualitas, meskipun penting, membawa

tantangan interpretasi. Alsulami mengulas software metrics

melalui systematic literature review dan menekankan

metrik sebagai pengukuran karakteristik perangkat lunak

yang dapat dihitung/diukur, khususnya terkait

maintainability prediction dan kebutuhan alat serta

prosedur yang sistematis [7]. Dalam SQA, metrik tidak

boleh dipakai sebagai ornamen laporan, melainkan sebagai

alat keputusan: menilai tren kualitas, memprediksi risiko

cacat, dan memprioritaskan refactoring atau hardening.

Namun, penggunaan metrik sering gagal ketika organisasi

tidak menyepakati definisi kualitas yang sama atau

mengabaikan konteks produk. Karena itu, integrasi model

kualitas (mis. ISO/IEC 25010) dengan metrik operasional

adalah kunci: metrik harus dipetakan ke karakteristik

kualitas yang memang relevan bagi stakeholder.

28

Perkembangan lain yang penting adalah munculnya

“platformisasi” SQA. Bernardo dkk. menunjukkan

SQAaaS sebagai platform yang melakukan asesmen

kualitas otomatis terhadap baseline kriteria, membuat

pipeline CI/CD secara otomatis, dan memberi insentif

melalui digital badges atas pencapaian kualitas tertentu [2].

Konsep ini memperluas SQA dari kegiatan internal menuju

layanan yang dapat distandardisasi, direplikasi, dan

dievaluasi lintas proyek. Dalam konteks riset dan open

science, ini menjawab masalah reproducibility dan kualitas

perangkat lunak riset yang sering tidak memiliki proses QA

kuat; tetapi secara umum, konsep serupa dapat diadopsi

perusahaan sebagai “quality platform” lintas tim.

Dengan demikian, landasan konseptual SQA modern

dapat dirangkum sebagai tiga pengikat: definisi kualitas

berbasis model (untuk menyamakan bahasa), mekanisme

proses yang mencegah cacat (untuk menstabilkan

delivery), dan bukti kualitas berbasis metrik serta pipeline

otomatis (untuk memastikan “assurance” bukan klaim,

tetapi dapat diverifikasi).

III. PRAKTIK, TEKNIK, DAN TREN SQA

Implementasi SQA modern dimulai dari integrasi

kualitas ke dalam alur kerja pengembangan. Dalam

organisasi Agile, SQA menjadi bagian dari desain sprint

melalui acceptance criteria yang eksplisit, definisi “done”

yang memasukkan pengujian otomatis, dan review lintas

peran. Praktik ini menyadari bahwa cacat bukan sekadar

kesalahan implementasi, tetapi sering berasal dari

ambiguïtas kebutuhan, komunikasi lintas fungsi yang

lemah, dan perubahan prioritas yang tidak terkendali.

Dalam DevOps, integrasi tersebut menjadi lebih ketat

melalui pipeline CI/CD yang menjalankan build, unit test,

static analysis, security scan, integration test, hingga

deployment otomatis. Keuntungan utamanya adalah

konsistensi: pengujian tidak lagi bergantung pada “ritual

manual”, melainkan menjadi proses yang dapat diulang,

diaudit, dan dioptimalkan.

Dalam literatur DevOps, keberhasilan pipeline bukan

hanya persoalan otomasi, tetapi juga desain feedback loop.

Azad dan Hyrynsalmi mengidentifikasi berbagai faktor

sukses DevOps dan menunjukkan bahwa aspek teknis,

organisasi, serta sosial-kultural saling mempengaruhi,

sehingga kualitas harus dipahami sebagai hasil sistem

sosio-teknis [4]. Untuk SQA, implikasinya adalah

pentingnya governance kualitas: definisi kualitas dan

kebijakan rilis harus dipahami bersama oleh developer,

tester/QA, security, dan ops. Tanpa itu, pipeline berisiko

menjadi “jalur cepat” yang hanya mempercepat rilis cacat.

Otomasi pengujian menjadi tulang punggung SQA

modern karena frekuensi rilis meningkat. Systematic

literature review tentang test automation dalam DevOps

menegaskan peran pivot test automation di berbagai tahap

pipeline dan menekankan bahwa continuous testing adalah

pendorong penting untuk delivery cepat dengan risiko lebih

rendah [5]. Continuous testing di sini tidak berarti semua

hal diuji terus-menerus tanpa seleksi, tetapi bahwa setiap

perubahan relevan memicu rangkaian pengujian yang

cukup untuk memberi keyakinan rilis. Tantangan utamanya

adalah biaya pemeliharaan test suite, flakiness, serta waktu

eksekusi. Organisasi yang matang biasanya menerapkan

strategi pengujian berlapis: unit test yang cepat dan luas,

integration test yang lebih selektif, contract test untuk

layanan, serta end-to-end test sebagai payung yang

jumlahnya terbatas tetapi kritikal.

Di sisi pengukuran, metrik kualitas pada 2020–2024

tidak hanya berfokus pada defect density atau test

coverage. Metrik berkembang ke arah produktivitas

pipeline dan kualitas proses, misalnya lead time, change

failure rate, mean time to recovery (MTTR), serta indikator

kualitas kode yang memengaruhi maintainability. Alsulami

menegaskan pentingnya metrik untuk memprediksi

maintainability dan menunjukkan bahwa studi sistematis

diperlukan untuk memahami indikator dan alat pengukuran

yang tepat [7]. Ini selaras dengan kebutuhan SQA:

maintainability sering menjadi “utang tersembunyi” yang

muncul sebagai biaya tinggi ketika perubahan rutin tidak

lagi aman. SQA yang kuat harus mampu mendeteksi

sinyal-sinyal deteriorasi maintainability sebelum menjadi

krisis, misalnya kompleksitas yang meningkat, churn tinggi

pada modul rentan, atau ketergantungan yang rapuh.

Untuk menjaga keterkaitan antara metrik dan kebutuhan

stakeholder, model kualitas ISO/IEC 25010:2023 dapat

dijadikan peta. Standar ini menekankan model kualitas

produk yang dapat digunakan untuk menetapkan ukuran

(measures) karakteristik kualitas dan mendukung aktivitas

seperti menetapkan tujuan pengujian dan acceptance

criteria [1]. Dalam praktiknya, organisasi dapat memetakan

metrik seperti latency p95/p99 ke performance efficiency,

tingkat crash atau availability ke reliability, hasil

SAST/DAST serta kerentanan dependency ke security, dan

indikator perbaikan kode serta cyclomatic complexity ke

maintainability. Pendekatan ini membantu mencegah

“kebingungan metrik” karena setiap metrik memiliki

alasan eksistensi yang terkait pada dimensi kualitas.

Tren menarik lainnya adalah lahirnya platform SQA

terstandar lintas proyek. Bernardo dkk. menunjukkan

SQAaaS sebagai platform open-source yang

mengotomatiskan asesmen kualitas berbasis baseline,

memfasilitasi pembuatan pipeline CI/CD untuk pengujian

baseline, dan memberikan digital badges untuk pencapaian

kualitas [2]. Dalam konteks perusahaan, konsep serupa bisa

diterjemahkan sebagai “internal quality platform” yang

menyediakan template pipeline, kebijakan kualitas, aturan

scanning, serta dashboard metrik yang seragam.

Dampaknya adalah mengurangi variasi kualitas antar tim

dan mempercepat adopsi best practice, karena tim tidak

perlu “menemukan ulang” proses QA dari nol.

SQA juga berhadapan dengan tantangan konfigurasi dan

variabilitas, terutama pada sistem modular, product line,

dan platform multi-tenant. Agh dkk. melalui SLR SPL

testing menekankan adanya gap pada regression testing dan

non-functional testing di SPL serta perlunya pendekatan

baru untuk seleksi, prioritisasi, dan minimisasi regression

test agar biaya pengujian tetap terkendali [6]. Perspektif ini

memperkaya SQA modern: kualitas bukan hanya

29

memastikan satu varian berjalan benar, melainkan

memastikan keluarga konfigurasi yang besar tetap aman,

terutama saat rilis kecil terjadi sering. Pada sistem

microservices, problem serupa muncul sebagai

“variabilitas runtime”: kombinasi versi layanan dan

dependensi eksternal dapat berubah dinamis. Oleh karena

itu, SQA perlu memadukan contract testing, canary release,

feature flags, dan observability untuk mendeteksi regresi

yang sulit direproduksi di lingkungan staging.

Tema yang semakin dominan pada 2020–2024 adalah

kualitas untuk AI-based software. Gezici dan Kolukısa

Tarhan meninjau kualitas perangkat lunak untuk sistem

berbasis AI dan menyoroti atribut kualitas, model yang

digunakan, tantangan, serta praktik yang dilaporkan dalam

literatur [8]. Berbeda dari perangkat lunak deterministik,

AI-based software memiliki sumber risiko tambahan

seperti bias data, drift, ketidakstabilan performa model

pada domain baru, serta kesulitan reproduksi hasil karena

data dan pelatihan. Ini memaksa SQA memperluas definisi

“verifikasi”: bukan hanya memverifikasi kode, tetapi juga

memvalidasi data, model, dan perilaku sistem pada

skenario yang berubah. Dalam praktik modern, hal ini

melahirkan gagasan quality gates untuk data dan model,

misalnya pemeriksaan kualitas data, monitoring drift, serta

evaluasi fairness dan robustness sebagai bagian dari

pipeline.

Selain kualitas produk, SQA juga membutuhkan kualitas

bukti. Dalam penelitian rekayasa perangkat lunak, Yang

dkk. menunjukkan bahwa quality assessment terhadap

studi yang direview menentukan kekuatan kesimpulan dan

mendorong penggunaan instrumen QA yang lebih rigorous

dan prosedur yang lebih jelas [3]. Jika prinsip ini diterapkan

pada SQA organisasi, maka bukti kualitas—hasil

pengujian, hasil scan keamanan, audit konfigurasi, hasil

monitoring produksi—perlu dinilai bukan sekadar “ada”,

tetapi juga “berkualitas”. Misalnya, test coverage tinggi

tidak otomatis berarti kualitas tinggi jika test tidak

bermakna; hasil scan keamanan tidak berarti aman jika

aturan scanning tidak sesuai konteks; monitoring tidak

berarti andal jika alert tidak actionable. Dengan demikian,

SQA modern menuntut meta-quality: kualitas atas

instrumen kualitas itu sendiri.

Secara operasional, SQA modern cenderung

menggabungkan pendekatan preventif dan detektif.

Preventif mencakup standardisasi coding, code review,

design review, threat modeling, serta penggunaan

arsitektur yang mendukung testability. Detektif mencakup

pengujian otomatis, static/dynamic analysis, serta

monitoring runtime. DevOps CSF menekankan pentingnya

keseimbangan antara dimensi teknis dan organisasi [4]; ini

mengisyaratkan bahwa organisasi yang hanya membeli

tool QA tanpa membangun budaya kualitas akan

menghadapi kegagalan implementasi karena resistensi,

proses yang tidak sinkron, atau “alarm fatigue”.

Bila ditarik lebih jauh, SQA modern bergerak menuju

“continuous assurance”. Ini bukan berarti semua hal

dipastikan sempurna setiap saat, melainkan bahwa

organisasi memiliki mekanisme yang membuat kualitas

selalu terlihat, selalu dibahas, dan selalu memiliki jalur

perbaikan. Keberhasilan continuous assurance ditandai

oleh stabilitas rilis, penurunan insiden kritis, serta

kemampuan recovery yang cepat ketika masalah terjadi.

Dalam skenario ini, kualitas diperlakukan sebagai proses

belajar: setiap bug dan insiden menjadi data untuk

memperbaiki pengujian, prosedur review, dan kebijakan

rilis.

IV. KESIMPULAN

Periode 2020–2024 menunjukkan bahwa Software

Quality Assurance bukan lagi fungsi “penjaga gerbang” di

akhir proyek, melainkan sistem pengelolaan kualitas yang

tertanam dalam proses dan pipeline. Model kualitas seperti

ISO/IEC 25010:2023 menyediakan bahasa bersama untuk

mendefinisikan kualitas sebagai karakteristik yang dapat

diturunkan menjadi kriteria penerimaan dan ukuran yang

terpantau. DevOps memperkuat ide bahwa kualitas

ditentukan oleh feedback loop lintas fungsi dan bahwa

faktor teknis, organisasi, serta sosial-kultural berkontribusi

pada keberhasilan implementasi kualitas. Otomasi

pengujian dalam pipeline DevOps mengakselerasi

pengendalian kualitas, namun menuntut strategi pengujian

berlapis dan tata kelola bukti kualitas agar kualitas tidak

menjadi ilusi angka.

Tren platformisasi SQA melalui konsep seperti SQAaaS

menunjukkan arah industrialisasi kualitas: asesmen

otomatis berbasis baseline, integrasi CI/CD yang seragam,

dan insentif pemenuhan kualitas melalui mekanisme

standar. Dalam sistem kompleks seperti product line atau

konfigurasi tinggi, literatur mengingatkan bahwa tantangan

regression testing dan non-functional testing masih

signifikan dan memerlukan inovasi pada seleksi serta

prioritisasi pengujian [6]. Dalam AI-based software,

definisi kualitas semakin luas karena mencakup data dan

model selain kode, sehingga SQA perlu memasukkan

validasi data, monitoring drift, dan evaluasi robustness

sebagai bagian dari assurance.

Arah pengembangan SQA ke depan, berdasarkan

sintesis literatur 2020–2024, mengarah pada empat fokus

besar. Pertama, penyatuan model kualitas dengan metrik

operasional agar setiap metrik memiliki makna yang

ditautkan pada kebutuhan stakeholder, sehingga

mengurangi risiko metric gaming dan mendorong

keputusan yang tepat. Kedua, penguatan quality

governance dalam organisasi DevOps, karena keberhasilan

tidak hanya bergantung pada toolchain tetapi juga pada

kebijakan, kolaborasi, dan budaya yang memastikan

kualitas tetap prioritas meski rilis cepat. Ketiga, perluasan

SQA untuk sistem modern—microservices, product line,

dan AI-based systems—yang menuntut kombinasi

pengujian, observability, serta manajemen risiko yang

lebih adaptif. Keempat, peningkatan kualitas bukti kualitas,

dengan menilai rigor instrumen dan proses pengujian

sebagaimana riset SLR menilai kualitas bukti ilmiah;

prinsip bahwa kesimpulan bergantung pada kualitas bukti

harus menjadi landasan pengambilan keputusan kualitas.

30

Pada akhirnya, SQA modern yang efektif bukanlah

kumpulan checklist, melainkan kemampuan organisasi

untuk membangun keyakinan berbasis bukti bahwa

perangkat lunak akan berperilaku baik di kondisi nyata,

sekaligus mampu beradaptasi ketika kondisi berubah.

Organisasi yang berhasil menerapkan SQA modern

biasanya memadukan standar kualitas sebagai kompas,

otomasi sebagai mesin, metrik sebagai instrumen navigasi,

dan budaya kolaboratif sebagai energi penggerak.

REFERENSI

[1] ISO/IEC, “ISO/IEC 25010:2023 Systems and software

engineering—Systems and software Quality Requirements and

Evaluation (SQuaRE)—Product quality model,” International

Organization for Standardization, 2023.

[2] S. Bernardo et al., “Software Quality Assurance as a Service:

Encompassing the quality assessment of software and services,”
Future Generation Computer Systems, 2024, doi:

10.1016/j.future.2024.03.024.

[3] L. Yang, H. Zhang, H. Shen, X. Huang, X. Zhou, G. Rong, and D.
Shao, “Quality Assessment in Systematic Literature Reviews: A

Software Engineering Perspective,” Information and Software
Technology, vol. 130, 2021, art. no. 106397, doi:

10.1016/j.infsof.2020.106397.

[4] N. Azad and S. Hyrynsalmi, “DevOps critical success factors — A
systematic literature review,” Information and Software

Technology, vol. 157, 2023, art. no. 107150, doi:

10.1016/j.infsof.2023.107150.
[5] A.R. Patel. “The State of Test Automation in DevOps: A

Systematic Literature Review,” 2022 Fourteenth International

Conference on Contemporary Computing (IC3), 2022.
[6] H. Agh, A. Azamnouri, and S. Wagner, “Software product line

testing: a systematic literature review,” Empirical Software

Engineering, vol. 29, art. no. 146, 2024, doi: 10.1007/s10664-024-
10516-x.

[7] M. Alsulami, “A Systematic Literature Review on Software

Metrics,” International Transaction Journal of Engineering,
Management, & Applied Sciences & Technologies, vol. 12, no. 12,

pp. 1–13, 2021, doi: 10.14456/ITJEMAST.2021.238.

[8] B. Gezici and A. Kolukısa Tarhan, “Systematic literature review on
software quality for AI-based software,” Empirical Software

Engineering, vol. 27, no. 3, 2022, doi: 10.1007/s10664-021-10105-

2.

