Vol. 16, No. 1, April 2024

IMPROVE

SSN(e): -/ ISSN(p) : 1979-8342

Software Quality Assurance (SQA) dalam
Rekayasa Perangkat Lunak Modern

Muhammad Ibnu Choldun Rachmatullah!

! D3 Manajemen Informatika, Universitas Logistik dan Bisnis Internasional

Imuhammadibnucholdun@ulbi.ac.id

Abstrak— Software Quality Assurance (SQA) merupakan
disiplin yang memastikan proses, produk, dan layanan perangkat
lunak memenuhi kebutuhan pemangku kepentingan melalui
kombinasi pendekatan proses, standar kualitas, pengukuran,
verifikasi—validasi, dan tata kelola perubahan. Dalam periode
2020-2024, SQA mengalami pergeseran paradigma yang kuat:
dari model “quality gate” yang cenderung berada di akhir siklus
menjadi “quality-as-code” yang tertanam dalam pipeline CI/CD,
didorong oleh Agile/DevOps, otomasi pengujian, observabilitas,
serta kebutuhan kualitas untuk sistem kompleks seperti
microservices dan Al-based software. Artikel review ini
merangkum konsep inti SQA, evolusi praktiknya, integrasi
dengan standar kualitas (mis. ISO/IEC 25010:2023), tren platform
SQA berbasis layanan (SQAaaS), dan temuan-temuan literatur
mutakhir terkait faktor sukses DevOps, otomasi pengujian, metrik
kualitas, serta tantangan kualitas khusus pada perangkat lunak
berbasis Al. Rangkaian pembahasan menekankan keterkaitan
antara definisi kualitas, strategi pengendalian proses, pemilihan
metrik, dan mekanisme umpan balik yang berkesinambungan agar
kualitas dapat dikelola sebagai sistem sosio-teknis, bukan sekadar
aktivitas pengujian.

Kata kunci— Software Quality Assurance, kualitas, metrik

Abstract— Software Quality Assurance (SQA) is a discipline that
ensures software processes, products, and services meet
stakeholder needs through a combination of process approaches,
quality standards, measurement, verification—validation, and
change governance. In the 2020-2024 period, SOA is undergoing
a strong paradigm shift: from a “quality gate” model that tends
to be at the end of the lifecycle to “quality-as-code” embedded in
CI/CD pipelines, driven by Agile/DevOps, test automation,
observability, and the quality requirements for complex systems
such as microservices and Al-based sofiware. This review article
summarizes the core concepts of SQA, the evolution of its
practices, integration with quality standards (e.g., ISO/IEC
25010:2023), trends in service-based SQA (SQAaaS) platforms,
and recent literature findings on DevOps success factors, test
automation, quality metrics, and specific quality challenges in AI-
based software. The series of discussions emphasizes the
relationship between the definition of quality, process control
strategies, selection of metrics, and continuous feedback
mechanisms so that quality can be managed as a socio-technical
system, not just a testing activity..

Keywords— Software Quality Assurance, quality, metrics

I. PENDAHULUAN

Kualitas perangkat lunak tidak lagi dipahami hanya
sebagai “bebas bug”, melainkan sebagai kemampuan
sistem untuk memberikan nilai dalam konteks penggunaan
nyata, mencakup aspek fungsional, kinerja, reliabilitas,
keamanan, kemudahan interaksi, serta kemampuan
berevolusi ketika kebutuhan berubah. Perubahan
ekspektasi pengguna, akselerasi rilis, dan meningkatnya
ketergantungan layanan digital menjadikan kualitas bukan
sekadar tujuan teknis, melainkan komitmen organisasi
yang memengaruhi reputasi, kepatuhan, dan keberlanjutan
bisnis. Dalam konteks ini, Software Quality Assurance
(SQA) berperan sebagai pendekatan sistematis untuk
memastikan kualitas dibangun sejak awal melalui
pengendalian proses, bukti pengujian, dan evaluasi
berbasis metrik yang dapat diaudit.

Selama bertahun-tahun, praktik SQA sering
dipersepsikan identik dengan aktivitas pengujian, terutama
pengujian fungsional menjelang rilis. Namun, literatur
modern menunjukkan bahwa pengujian hanya salah satu
komponen dari SQA. SQA mencakup kebijakan, standar,

prosedur, audit internal, manajemen konfigurasi,
pengukuran kualitas, serta mekanisme perbaikan
berkelanjutan. Pada organisasi yang mengadopsi

Agile/DevOps, SQA juga berubah menjadi aktivitas yang
melekat pada pipeline pengembangan: kualitas dipantau
terus-menerus, risiko diidentifikasi lebih dini, dan kontrol
kualitas menjadi otomatis dan dapat direproduksi.
Perubahan besar pada 2020-2024 terjadi karena dua
tekanan utama. Pertama, tuntutan time-to-market yang
cepat memaksa organisasi untuk mengintegrasikan kontrol
kualitas ke dalam CI/CD agar rilis sering tetap aman.
Temuan dari systematic literature review tentang critical
success factors (CSF) DevOps memperlihatkan bahwa
keberhasilan DevOps sangat terkait dengan kemampuan
membangun umpan balik cepat, otomasi, serta praktik
lintas fungsi yang menstabilkan kualitas dalam ritme rilis
yang padat [4]. Kedua, meningkatnya kompleksitas
sistem—microservices, cloud-native, dependensi pihak
ketiga, dan Al-based software—membuat definisi
“kualitas” semakin multi-dimensi dan kontekstual.
ISO/IEC 25010:2023 memperbarui model kualitas produk
perangkat lunak menjadi sembilan karakteristik yang dapat

26

menjadi acuan dalam spesifikasi, pengukuran, dan evaluasi
kualitas sepanjang siklus hidup [1]. Hal ini memperlihatkan
bahwa SQA modern membutuhkan kerangka kualitas yang
lebih kaya daripada sekadar daftar bug.

Selain itu, munculnya platform dan layanan kualitas
seperti Software Quality Assurance as a Service (SQAaaS)
menandai tren industrialisasi SQA dalam skala luas.
Bernardo dkk. memperkenalkan konsep SQAaaS yang
memfasilitasi asesmen otomatis metrik kualitas dan
baseline standar, termasuk integrasi pembuatan pipeline
CI/CD untuk pengujian otomatis serta pemberian “digital
badges” sebagai insentif pemenuhan baseline kualitas [2].
Dengan demikian, SQA tidak hanya menjadi aktivitas
internal tim, tetapi juga dapat menjadi ekosistem layanan
yang memperkuat transparansi, reproducibility, dan
governance kualitas.

Namun, evolusi SQA juga memunculkan pertanyaan
metodologis: bagaimana menilai bukti kualitas secara
rigor, bagaimana memilih metrik yang benar-benar
merepresentasikan kualitas, dan bagaimana menghindari
“metric gaming” atau optimasi semu. Dalam konteks riset
software engineering, studi Yang dkk. tentang quality
assessment (QA) pada systematic literature reviews
menekankan pentingnya prosedur penilaian kualitas bukti
yang konsisten dan instrumen QA yang lebih beragam serta
rigor, karena kesimpulan sangat bergantung pada kualitas
studi yang ditinjau [3]. Walau fokusnya QA pada riset,
prinsip dasarnya relevan untuk SQA: kualitas keputusan
hanya sebaik kualitas bukti yang dikumpulkan.

Berdasarkan latar tersebut, artikel ini disusun sebagai
review terstruktur empat bab untuk: (1) membangun
fondasi konseptual SQA dan hubungannya dengan model
kualitas; (2) menjelaskan praktik SQA modern dalam
Agile/DevOps dan otomasi; (3) membahas pengukuran,
platform, serta tantangan mutakhir termasuk Al-based
software; dan (4) merumuskan kesimpulan serta arah riset
dan implementasi ke depan.

II. LANDASAN KONSEPTUAL SQA DAN EVOLUSI
KERANGKA KUALITAS

Secara prinsip, SQA adalah serangkaian aktivitas
terencana dan sistematis untuk memberikan keyakinan
(assurance) bahwa proses dan produk perangkat lunak
memenuhi persyaratan kualitas. “Assurance” berbeda dari
“control”: quality control cenderung berfokus pada deteksi
cacat pada output, sedangkan quality assurance berfokus
pada pencegahan cacat melalui proses yang benar, standar
yang jelas, dan mekanisme audit yang dapat menunjukkan
bahwa pekerjaan dilakukan sesuai kebijakan. Karena
perangkat lunak adalah artefak yang mudah berubah, SQA
harus memadukan kontrol proses dan kontrol evolusi,
sehingga kualitas bukan kondisi statis melainkan
kemampuan sistem mempertahankan performa dan
reliabilitas di tengah perubahan.

Kerangka kualitas menjadi pusat SQA karena “kualitas”
hanya dapat dikelola jika didefinisikan. ISO/IEC
25010:2023 menawarkan model kualitas produk yang
dapat diterapkan pada produk TIK dan perangkat lunak,

dan ditujukan untuk spesifikasi kebutuhan, pengukuran,
dan evaluasi [1]. Dalam praktik SQA, model ini dapat
digunakan untuk menerjemahkan tuntutan stakeholder
menjadi karakteristik dan sub-karakteristik yang terukur.
Yang penting, standar tersebut menegaskan model kualitas
dapat dimanfaatkan oleh berbagai pihak—pengembang,
pembeli, staf QA/QC, hingga evaluator independen—dan
relevan sepanjang lifecycle, mulai dari elisitasi kebutuhan
hingga kriteria penerimaan [1]. Artinya, SQA modern
idealnya mengikat definisi kualitas dengan artefak
operasional: user story, acceptance criteria, test plan, non-
functional requirements, dan metrik pemantauan.

Evolusi Agile dan DevOps mengubah lokasi dan ritme
SQA. Pada pendekatan tradisional, SQA sering dipusatkan
pada fase verifikasi akhir, mengikuti konsep “test after
build”. Agile mendorong iterasi pendek, sehingga SQA
harus memfasilitasi feedback cepat, definisi “done” yang
konsisten, dan pengujian berlapis sejak awal sprint.
DevOps memperluasnya dengan memasukkan operasi
(monitoring, incident response) sebagai bagian dari quality
loop. Studi CSF DevOps menunjukkan keberhasilan
DevOps terkait faktor teknis, organisasi, serta sosial-
budaya; keberhasilan tidak hanya ditentukan oleh
toolchain, tetapi juga kolaborasi lintas tim, standardisasi
proses tertentu, dan kualitas umpan balik yang mengalir
dari produksi ke pengembangan [4]. Dari sudut SQA, hal
ini berarti ‘“assurance” mencakup kualitas perilaku
organisasi: apakah proses mampu mengubah sinyal
produksi menjadi perbaikan terstruktur.

Seiring meningkatnya kompleksitas sistem, SQA juga
bergeser dari fokus tunggal pada pengujian fungsional
menuju kualitas multi-aspek. Dalam domain pengujian,
literature review tentang software product line (SPL)
testing menggambarkan tantangan sistem konfigurasi
tinggi: pengujian harus mempertimbangkan variasi fitur,
biaya pengujian, serta non-functional testing yang sering
belum tercakup memadai [6]. Ini memperlihatkan bahwa
SQA menghadapi keterbatasan klasik: ruang uji yang
eksplosif, keterbatasan sumber daya, dan kebutuhan
strategi seleksi—prioritisasi pengujian. Karena itu, SQA
modern bergantung pada teknik seleksi risiko, otomasi
cerdas, dan metrik untuk memandu trade-off.

Pengukuran kualitas, meskipun penting, membawa
tantangan interpretasi. Alsulami mengulas software metrics
melalui systematic literature review dan menekankan
metrik sebagai pengukuran karakteristik perangkat lunak
yang dapat dihitung/diukur, khususnya terkait
maintainability prediction dan kebutuhan alat serta
prosedur yang sistematis [7]. Dalam SQA, metrik tidak
boleh dipakai sebagai ornamen laporan, melainkan sebagai
alat keputusan: menilai tren kualitas, memprediksi risiko
cacat, dan memprioritaskan refactoring atau hardening.
Namun, penggunaan metrik sering gagal ketika organisasi
tidak menyepakati definisi kualitas yang sama atau
mengabaikan konteks produk. Karena itu, integrasi model
kualitas (mis. ISO/IEC 25010) dengan metrik operasional
adalah kunci: metrik harus dipetakan ke karakteristik
kualitas yang memang relevan bagi stakeholder.

27

Perkembangan lain yang penting adalah munculnya
“platformisasi” SQA. Bernardo dkk. menunjukkan
SQAaaS sebagai platform yang melakukan asesmen
kualitas otomatis terhadap baseline kriteria, membuat
pipeline CI/CD secara otomatis, dan memberi insentif
melalui digital badges atas pencapaian kualitas tertentu [2].
Konsep ini memperluas SQA dari kegiatan internal menuju
layanan yang dapat distandardisasi, direplikasi, dan
dievaluasi lintas proyek. Dalam konteks riset dan open
science, ini menjawab masalah reproducibility dan kualitas
perangkat lunak riset yang sering tidak memiliki proses QA
kuat; tetapi secara umum, konsep serupa dapat diadopsi
perusahaan sebagai “quality platform” lintas tim.

Dengan demikian, landasan konseptual SQA modern
dapat dirangkum sebagai tiga pengikat: definisi kualitas
berbasis model (untuk menyamakan bahasa), mekanisme
proses yang mencegah cacat (untuk menstabilkan
delivery), dan bukti kualitas berbasis metrik serta pipeline
otomatis (untuk memastikan “assurance” bukan klaim,
tetapi dapat diverifikasi).

III. PRAKTIK, TEKNIK, DAN TREN SQA

Implementasi SQA modern dimulai dari integrasi
kualitas ke dalam alur kerja pengembangan. Dalam
organisasi Agile, SQA menjadi bagian dari desain sprint
melalui acceptance criteria yang eksplisit, definisi “done”
yang memasukkan pengujian otomatis, dan review lintas
peran. Praktik ini menyadari bahwa cacat bukan sekadar
kesalahan implementasi, tetapi sering berasal dari
ambiguitas kebutuhan, komunikasi lintas fungsi yang
lemah, dan perubahan prioritas yang tidak terkendali.
Dalam DevOps, integrasi tersebut menjadi lebih ketat
melalui pipeline CI/CD yang menjalankan build, unit test,
static analysis, security scan, integration test, hingga
deployment otomatis. Keuntungan utamanya adalah
konsistensi: pengujian tidak lagi bergantung pada “ritual
manual”, melainkan menjadi proses yang dapat diulang,
diaudit, dan dioptimalkan.

Dalam literatur DevOps, keberhasilan pipeline bukan
hanya persoalan otomasi, tetapi juga desain feedback loop.
Azad dan Hyrynsalmi mengidentifikasi berbagai faktor
sukses DevOps dan menunjukkan bahwa aspek teknis,
organisasi, serta sosial-kultural saling mempengaruhi,
sehingga kualitas harus dipahami sebagai hasil sistem
sosio-teknis [4]. Untuk SQA, implikasinya adalah
pentingnya governance kualitas: definisi kualitas dan
kebijakan rilis harus dipahami bersama oleh developer,
tester/QA, security, dan ops. Tanpa itu, pipeline berisiko
menjadi “jalur cepat” yang hanya mempercepat rilis cacat.

Otomasi pengujian menjadi tulang punggung SQA
modern karena frekuensi rilis meningkat. Systematic
literature review tentang test automation dalam DevOps
menegaskan peran pivot test automation di berbagai tahap
pipeline dan menekankan bahwa continuous testing adalah
pendorong penting untuk delivery cepat dengan risiko lebih
rendah [5]. Continuous testing di sini tidak berarti semua
hal diuji terus-menerus tanpa seleksi, tetapi bahwa setiap
perubahan relevan memicu rangkaian pengujian yang

cukup untuk memberi keyakinan rilis. Tantangan utamanya
adalah biaya pemeliharaan test suite, flakiness, serta waktu
eksekusi. Organisasi yang matang biasanya menerapkan
strategi pengujian berlapis: unit test yang cepat dan luas,
integration test yang lebih selektif, contract test untuk
layanan, serta end-to-end test sebagai payung yang
jumlahnya terbatas tetapi kritikal.

Di sisi pengukuran, metrik kualitas pada 2020-2024
tidak hanya berfokus pada defect density atau test
coverage. Metrik berkembang ke arah produktivitas
pipeline dan kualitas proses, misalnya lead time, change
failure rate, mean time to recovery (MTTR), serta indikator
kualitas kode yang memengaruhi maintainability. Alsulami
menegaskan pentingnya metrik untuk memprediksi
maintainability dan menunjukkan bahwa studi sistematis
diperlukan untuk memahami indikator dan alat pengukuran
yang tepat [7]. Ini selaras dengan kebutuhan SQA:
maintainability sering menjadi “utang tersembunyi” yang
muncul sebagai biaya tinggi ketika perubahan rutin tidak
lagi aman. SQA yang kuat harus mampu mendeteksi
sinyal-sinyal deteriorasi maintainability sebelum menjadi
krisis, misalnya kompleksitas yang meningkat, churn tinggi
pada modul rentan, atau ketergantungan yang rapuh.

Untuk menjaga keterkaitan antara metrik dan kebutuhan
stakeholder, model kualitas ISO/IEC 25010:2023 dapat
dijadikan peta. Standar ini menekankan model kualitas
produk yang dapat digunakan untuk menetapkan ukuran
(measures) karakteristik kualitas dan mendukung aktivitas
seperti menetapkan tujuan pengujian dan acceptance
criteria [1]. Dalam praktiknya, organisasi dapat memetakan
metrik seperti latency p95/p99 ke performance efficiency,
tingkat crash atau availability ke reliability, hasil
SAST/DAST serta kerentanan dependency ke security, dan
indikator perbaikan kode serta cyclomatic complexity ke
maintainability. Pendekatan ini membantu mencegah
“kebingungan metrik” karena setiap metrik memiliki
alasan eksistensi yang terkait pada dimensi kualitas.

Tren menarik lainnya adalah lahirnya platform SQA
terstandar lintas proyek. Bernardo dkk. menunjukkan
SQAaaS sebagai platform open-source yang
mengotomatiskan asesmen kualitas berbasis baseline,
memfasilitasi pembuatan pipeline CI/CD untuk pengujian
baseline, dan memberikan digital badges untuk pencapaian
kualitas [2]. Dalam konteks perusahaan, konsep serupa bisa
diterjemahkan sebagai “internal quality platform” yang
menyediakan template pipeline, kebijakan kualitas, aturan
scanning, serta dashboard metrik yang seragam.
Dampaknya adalah mengurangi variasi kualitas antar tim
dan mempercepat adopsi best practice, karena tim tidak
perlu “menemukan ulang” proses QA dari nol.

SQA juga berhadapan dengan tantangan konfigurasi dan
variabilitas, terutama pada sistem modular, product line,
dan platform multi-tenant. Agh dkk. melalui SLR SPL
testing menekankan adanya gap pada regression testing dan
non-functional testing di SPL serta perlunya pendekatan
baru untuk seleksi, prioritisasi, dan minimisasi regression
test agar biaya pengujian tetap terkendali [6]. Perspektif ini
memperkaya SQA modern: kualitas bukan hanya

28

memastikan satu varian berjalan benar, melainkan
memastikan keluarga konfigurasi yang besar tetap aman,
terutama saat rilis kecil terjadi sering. Pada sistem
microservices, problem serupa muncul sebagai
“variabilitas runtime”: kombinasi versi layanan dan
dependensi eksternal dapat berubah dinamis. Oleh karena
itu, SQA perlu memadukan contract testing, canary release,
feature flags, dan observability untuk mendeteksi regresi
yang sulit direproduksi di lingkungan staging.

Tema yang semakin dominan pada 2020-2024 adalah
kualitas untuk Al-based software. Gezici dan Kolukisa
Tarhan meninjau kualitas perangkat lunak untuk sistem
berbasis Al dan menyoroti atribut kualitas, model yang
digunakan, tantangan, serta praktik yang dilaporkan dalam
literatur [8]. Berbeda dari perangkat lunak deterministik,
Al-based software memiliki sumber risiko tambahan
seperti bias data, drift, ketidakstabilan performa model
pada domain baru, serta kesulitan reproduksi hasil karena
data dan pelatihan. Ini memaksa SQA memperluas definisi
“verifikasi”: bukan hanya memverifikasi kode, tetapi juga
memvalidasi data, model, dan perilaku sistem pada
skenario yang berubah. Dalam praktik modern, hal ini
melahirkan gagasan quality gates untuk data dan model,
misalnya pemeriksaan kualitas data, monitoring drift, serta
evaluasi fairness dan robustness sebagai bagian dari
pipeline.

Selain kualitas produk, SQA juga membutuhkan kualitas
bukti. Dalam penelitian rekayasa perangkat lunak, Yang
dkk. menunjukkan bahwa quality assessment terhadap
studi yang direview menentukan kekuatan kesimpulan dan
mendorong penggunaan instrumen QA yang lebih rigorous
dan prosedur yang lebih jelas [3]. Jika prinsip ini diterapkan
pada SQA organisasi, maka bukti kualitas—hasil
pengujian, hasil scan keamanan, audit konfigurasi, hasil
monitoring produksi—perlu dinilai bukan sekadar “ada”,
tetapi juga “berkualitas”. Misalnya, test coverage tinggi
tidak otomatis berarti kualitas tinggi jika test tidak
bermakna; hasil scan keamanan tidak berarti aman jika
aturan scanning tidak sesuai konteks; monitoring tidak
berarti andal jika alert tidak actionable. Dengan demikian,

SQA modern menuntut meta-quality: kualitas atas
instrumen kualitas itu sendiri.
Secara operasional, SQA modern cenderung

menggabungkan pendekatan preventif dan detektif.
Preventif mencakup standardisasi coding, code review,
design review, threat modeling, serta penggunaan
arsitektur yang mendukung testability. Detektif mencakup
pengujian otomatis, static/dynamic analysis, serta
monitoring runtime. DevOps CSF menekankan pentingnya
keseimbangan antara dimensi teknis dan organisasi [4]; ini
mengisyaratkan bahwa organisasi yang hanya membeli
tool QA tanpa membangun budaya kualitas akan
menghadapi kegagalan implementasi karena resistensi,
proses yang tidak sinkron, atau “alarm fatigue”.

Bila ditarik lebih jauh, SQA modern bergerak menuju
“continuous assurance”. Ini bukan berarti semua hal
dipastikan sempurna setiap saat, melainkan bahwa
organisasi memiliki mekanisme yang membuat kualitas

selalu terlihat, selalu dibahas, dan selalu memiliki jalur
perbaikan. Keberhasilan continuous assurance ditandai
oleh stabilitas rilis, penurunan insiden Kkritis, serta
kemampuan recovery yang cepat ketika masalah terjadi.
Dalam skenario ini, kualitas diperlakukan sebagai proses
belajar: setiap bug dan insiden menjadi data untuk
memperbaiki pengujian, prosedur review, dan kebijakan
rilis.

IV.KESIMPULAN

Periode 2020-2024 menunjukkan bahwa Software
Quality Assurance bukan lagi fungsi “penjaga gerbang” di
akhir proyek, melainkan sistem pengelolaan kualitas yang
tertanam dalam proses dan pipeline. Model kualitas seperti
ISO/IEC 25010:2023 menyediakan bahasa bersama untuk
mendefinisikan kualitas sebagai karakteristik yang dapat
diturunkan menjadi kriteria penerimaan dan ukuran yang
terpantau. DevOps memperkuat ide bahwa kualitas
ditentukan oleh feedback loop lintas fungsi dan bahwa
faktor teknis, organisasi, serta sosial-kultural berkontribusi
pada keberhasilan implementasi kualitas. Otomasi
pengujian dalam pipeline DevOps mengakselerasi
pengendalian kualitas, namun menuntut strategi pengujian
berlapis dan tata kelola bukti kualitas agar kualitas tidak
menjadi ilusi angka.

Tren platformisasi SQA melalui konsep seperti SQAaaS
menunjukkan arah industrialisasi kualitas: asesmen
otomatis berbasis baseline, integrasi CI/CD yang seragam,
dan insentif pemenuhan kualitas melalui mekanisme
standar. Dalam sistem kompleks seperti product line atau
konfigurasi tinggi, literatur mengingatkan bahwa tantangan
regression testing dan non-functional testing masih
signifikan dan memerlukan inovasi pada seleksi serta
prioritisasi pengujian [6]. Dalam Al-based software,
definisi kualitas semakin luas karena mencakup data dan
model selain kode, sehingga SQA perlu memasukkan
validasi data, monitoring drift, dan evaluasi robustness
sebagai bagian dari assurance.

Arah pengembangan SQA ke depan, berdasarkan
sintesis literatur 2020-2024, mengarah pada empat fokus
besar. Pertama, penyatuan model kualitas dengan metrik
operasional agar setiap metrik memiliki makna yang

ditautkan pada kebutuhan stakeholder, sehingga
mengurangi risiko metric gaming dan mendorong
keputusan yang tepat. Kedua, penguatan quality

governance dalam organisasi DevOps, karena keberhasilan
tidak hanya bergantung pada toolchain tetapi juga pada
kebijakan, kolaborasi, dan budaya yang memastikan
kualitas tetap prioritas meski rilis cepat. Ketiga, perluasan
SQA untuk sistem modern—microservices, product line,
dan Al-based systems—yang menuntut kombinasi
pengujian, observability, serta manajemen risiko yang
lebih adaptif. Keempat, peningkatan kualitas bukti kualitas,
dengan menilai rigor instrumen dan proses pengujian
sebagaimana riset SLR menilai kualitas bukti ilmiah;
prinsip bahwa kesimpulan bergantung pada kualitas bukti
harus menjadi landasan pengambilan keputusan kualitas.

29

Pada akhirnya, SQA modern yang efektif bukanlah

kumpulan checklist, melainkan kemampuan organisasi
untuk membangun keyakinan berbasis bukti bahwa
perangkat lunak akan berperilaku baik di kondisi nyata,
sekaligus mampu beradaptasi ketika kondisi berubah.
Organisasi yang berhasil menerapkan SQA modern
biasanya memadukan standar kualitas sebagai kompas,
otomasi sebagai mesin, metrik sebagai instrumen navigasi,
dan budaya kolaboratif sebagai energi penggerak.

REFERENSI

ISO/IEC, “ISO/IEC 25010:2023 Systems and software
engineering—Systems and software Quality Requirements and
Evaluation (SQuaRE)—Product quality model,” International
Organization for Standardization, 2023.

S. Bernardo et al., “Software Quality Assurance as a Service:
Encompassing the quality assessment of software and services,”
Future Generation Computer Systems, 2024, doi:
10.1016/j.future.2024.03.024.

L. Yang, H. Zhang, H. Shen, X. Huang, X. Zhou, G. Rong, and D.
Shao, “Quality Assessment in Systematic Literature Reviews: A
Software Engineering Perspective,” Information and Software
Technology, vol. 130, 2021, art. no. 106397, doi:
10.1016/j.infs0£.2020.106397.

N. Azad and S. Hyrynsalmi, “DevOps critical success factors — A
systematic literature review,” Information and Software
Technology, vol. 157, 2023, art. no. 107150, doi:
10.1016/.infs0£.2023.107150.

A.R. Patel. “The State of Test Automation in DevOps: A
Systematic Literature Review,” 2022 Fourteenth International
Conference on Contemporary Computing (IC3), 2022.

H. Agh, A. Azamnouri, and S. Wagner, “Software product line
testing: a systematic literature review,” Empirical Software
Engineering, vol. 29, art. no. 146, 2024, doi: 10.1007/s10664-024-
10516-x.

M. Alsulami, “A Systematic Literature Review on Software
Metrics,” International Transaction Journal of Engineering,
Management, & Applied Sciences & Technologies, vol. 12, no. 12,
pp. 1-13,2021, doi: 10.14456/ITJEMAST.2021.238.

B. Gezici and A. Kolukisa Tarhan, “Systematic literature review on
software quality for Al-based software,” Empirical Software
Engineering, vol. 27, no. 3, 2022, doi: 10.1007/s10664-021-10105-
2.

30

