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Abstract  
This paper investigates the reliability of the continuous-review (R, Q) inventory policy in environments 
characterized by extreme demand intermittency. Using a 23-period demand trace from a fishery diagnostic 
laboratory with a Coefficient of Variation (CV) of 2.08 and a 61% zero-demand rate, we stress-test the classical 
"Normality Assumption." While reorder points (R) are traditionally calculated using Gaussian safety stock 
formulas to meet target service levels, we hypothesize that this approach suffers from Mathematical Decay 
when subjected to skewed, lumpy demand.Using a dual-track methodology, we first perform a Static Stress Test 
(non-parametric bootstrap) to isolate the reorder point. Results show a significant service-level deficit, where 
the "Normal" R fails to cover empirical demand spikes, falling nearly 11% below the 98% target. We then 
conduct a Dynamic System Simulation to observe the interaction between $R$ and the order quantity (Q). This 
reveal a phenomenon we define as the "Masking Effect": as Q increases, the system’s service level recovers to 
near-target levels despite using the same faulty reorder trigger.The study concludes that in intermittent 
environments, the reorder point is a decoupled and unreliable trigger; system survival depends almost entirely 
on the "brute force" of the replenishment volume. These findings suggest that practitioners in specialized 
sectors should move away from parametric safety stock math in favor of percentile-based empirical triggers to 
avoid the hidden operational risks created by the masking effect. 
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1. INTRODUCTION 
The Stochastic Economic Order Quantity (EOQ) is a 
fundamental framework in inventory management, 
designed to balance ordering and holding costs. A 
nearly universal practice in both academic and 
industrial applications of this model is the Normality 
Assumption: the belief that demand during lead time 
follows a Normal distribution. This choice is favored 
for its mathematical simplicity and the theoretical 
backing of the Central Limit Theorem. 
However, this "bell curve" logic assumes a level of 
stability and symmetry that is often absent in 
specialized service sectors. In industries such as 
fishery diagnostic laboratories, demand is frequently 
intermittent and highly skewed. These environments 
are characterized by "lumpy" demand—long periods 
of zero activity interrupted by rare, high-magnitude 
spikes.  

When the Coefficient of Variation (CV)—the ratio of 
the standard deviation to the mean—exceeds a certain 
threshold, the Normal distribution begins to fail. 
Specifically, it starts to allocate probability to 
"negative demand" and underestimates the "Long 
Tail" where extreme spikes occur. 
This paper conducts a stress test on continuous review 
model using real-world data from a fishery lab with a 
CV of 2.08. We evaluate the model's performance 
through two lenses: 

1) A Static Stress Test: To isolate the 
mathematical failure of the Normal formula 
in predicting spikes. This test demonstrates 
how the 𝑅𝑅 formula fails to provide the target 
service level when treated as a standalone 
trigger 

2) A Dynamic Simulation (System-Centric 
Analysis): To observe how the interaction 
between the reorder point and the order 
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quantity (𝑄𝑄) allows operational flow and 
"quiet periods" might hide underlying model 
weaknesses. 

While the limitations of the Normal distribution were 
identified in foundational works such as Hadley and 
Whitin (1963) and Silver and Peterson (1985), many 
modern practitioners still rely on these basic 
formulations. Recent literature has extensively 
addressed the challenges of intermittent demand. Tian 
et al. (2021) introduced a Markov-combined method 
that explicitly models the transition between zero and 
non-zero states, demonstrating superior accuracy 
over traditional Croston variants in retail 
environments. Similarly, Sarlo et al. (2025) utilized 
score-driven models to dynamically adjust inventory 
targets, proving that static parametric assumptions 
fail to maintain target service levels in volatile 
datasets. 
The debate between parametric and non-parametric 
approaches remains active. Zhang et al. (2024) 
explored transformer neural networks for 
intermittency, highlighting that while machine 
learning offers precision, it requires vast datasets 
often unavailable in specialized sectors like fishery. 
Consequently, simulation-based approaches using 
synthetic data, as discussed by Babai et al. (2022) 
regarding temporal aggregation, remain a vital tool 
for determining robust safety stocks in data-scarce 
environments. Our study contributes to this stream by 
quantifying the specific 'masking effect' of 
intermittency on standard service level metrics. 
 
2. METHODOLOGY 
This study utilizes a Trace-Driven Simulation 
approach. Rather than fitting a distribution to the data, 
we used the empirical demand observations from a 
real-world fishery lab to calculate the Empirical 
Percentiles. This allowed us to observe the model's 
failure in a "clean" settings ensuring that any 
performance decay is attributed to the logic of the 
policy itself rather than distribution-fitting errors.  

2.1 The (R, Q) Policy Framework  

We utilize the Stochastic EOQ, formally known as the 
(R, Q ) policy, based on the classical derivations by 
Hadley and Whitin (1963). In this system, a fixed 
order quantity (𝑄𝑄) is triggered whenever the 
inventory position drops to or below the reorder point 
(𝑅𝑅). 

2.2 Reorder Point Calculation  

Under the Normality Assumption, the reorder point 
(𝑅𝑅) is calculated using the mean demand during lead 
time  (μ𝐿𝐿)  and a safety stock buffer: 
 

𝑅𝑅 = μ𝐿𝐿 + (𝑍𝑍 ⋅ σ𝐿𝐿) 
 
In this study, we set a target cycle service level of 
98%, which corresponds to a safety factor 𝑍𝑍 =  2.05. 
We use the empirical mean and standard deviation 
from the fishery lab dataset to calculate this baseline 
𝑅𝑅.  

2.3 Simulation Design: Input, Process, Output  

The simulation is designed to isolate how the 
Coefficient of Variation (CV) affects the accuracy of 
the 𝑅𝑅 value calculated above. 
 

1. Input  
The 23-period demand trace from the fishery 
laboratory. This data serves as the "empirical 
truth" for the simulation. In this case, we 
resample the data without distribution fitting 
approach.  
 

Table 1. Demand of Fishery Laboratory 

Date Demand 
01/04/2023 0 
01/05/2023 0 
01/06/2023 0 
01/09/2023 0 
01/10/2023 0 
01/01/2024 0 
01/02/2024 0 
01/03/2024 0 
01/04/2024 0 
01/05/2024 0 
01/06/2024 0 
01/07/2024 0 
01/09/2024 0 
01/10/2024 0 
01/03/2023 100 
01/11/2024 100 
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Date Demand 
01/08/2023 200 
01/11/2023 200 
01/08/2024 200 
01/01/2025 300 
01/07/2023 1400 
01/12/2023 1500 
01/12/2024 1600 

Source: Fishery Lab (2025) 
 

2. Process (Dual-Track) 
a) Independent Stress Test (Static)  

We perform 10,000 resampling trials 
(with replacement). Each trial is an 
independent event where the sampled 
demand is compared directly against the 
calculated 𝑅𝑅. If the sampled demand 
𝑑𝑑𝑖𝑖  >  𝑅𝑅 the period is marked as a 
"Failure.”  

b) System-Centric Simulation (Dynamic) 
We simulate a continuous inventory flow 
where unsold stock carries over to the 
next period. e test a range of 𝑄𝑄 values 
(100 to 1,000 units). This reveals how a 
large 𝑄𝑄 can prevent stockouts even when 
𝑅𝑅 is triggered late, effectively "masking" 
the formulaic decay identified in point 
(a). 

3. Output 
The primary output is the Actual Service 
Level, calculated as the percentage of periods 
where demand was fully satisfied. 
 

To ensure replicability, the simulation was 
implemented in Python using a trace-driven 
resampling algorithm. The core logic of the system-
centric simulation is provided in Appendix. The 
algorithm utilizes the NumPy library for random 
selection with replacement and Matplotlib for 
visualizing inventory flow across 10,000 iterations 

2.4 Actual Service Level 

Since the static test resamples the 23-day trace, the 
long-term service level must converge to: 
 
Actual Service Level = Count of days where Demand≤𝑅𝑅

Total Days (23)
  

 

This provides a "sanity check" that allows for a 
transparent comparison between the complex Monte 
Carlo output and the raw data. 
 
 
3. RESULT AND DISCUSSION 
This section presents the numerical findings of the 
study, comparing the theoretical assumptions of the 
Normal distribution against the empirical reality of 
the fishery lab demand. 

3.1 Step-by-Step Numerical Analysis 

To establish the baseline, we apply the standard 
stochastic EOQ safety stock formula. The lead time is 
assumed to be one period (𝐿𝐿 = 1). The demand of the 
item is as follows: 
 

1) Descriptive Statistics The 23-period dataset 
yielded the following parameters: 
a) Mean (µ) = 243.5 unit 
b) Standard Deviation (σ) = 506.2 units 
c) Coefficient of Variation (σ

µ
) = 

506.2/243.5 = 2.08 
 

2) Normal Safety Stock Calculation Targeting a 
98% Service Level, the corresponding Z-
score is 2.05. 
𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑍𝑍 ⋅ σ =  2.05 ⋅ 506.2 =
1,039.5 units  

 
3)  Determination of Reorder Point (ROP) 

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝜇𝜇 + 𝑆𝑆𝑆𝑆 = 243.5 + 1039.5 =
𝟏𝟏,𝟐𝟐𝟐𝟐𝟐𝟐 unit   
 

3.2 Result of Independent Stress Test (Static)  
The simulation revealed that the Actual Service Level 
(ASL) was significantly lower than the 98% target. 
Because the fishery lab data contains spikes of 1,400, 
1,500, and 1,600 units, the "Normal" 𝑅𝑅 failed to cover 
the right-hand tail of the empirical distribution. 

• Target Service Level: 98.0% 
• Actual Static Service Level: 87.29% 

(Calculated as the probability that demand 
≤1,283) 

• Observation: The Normality Assumption 
failed to account for the "Long Tail" of the 
data, resulting in  11% service level deficit. 
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Figure 1 Reorder Points Misses Extreme Spikes 

The validity of the simulation can also be verified 
through a direct empirical calculation. Because the 
Independent Stress Test utilizes resampling with 
replacement from the historical 23-period trace, the 
resulting Service Level must mathematically 
converge to the frequency of "Success" periods 
within the original dataset. 
Based on the Normal model's Reorder Point (𝑅𝑅 =
 1,283), the historical data is categorized as follows: 

a) Total Observations (𝑛𝑛): 23 periods 
b) Failure Events (𝐷𝐷 >  𝑅𝑅) is equal to 

3 observations, when the demand is 1,400, 
1,500, and 1,600 unit spikes 

c) Success Events (𝐷𝐷 ≤  𝑅𝑅) where demand is 
less or equal to the reorder point is equal to 
20 observations 

 
The Actual Service Level is therefore calculated as: 
Service Level = Count of days where Demand≤𝑅𝑅

Total Days (23)
  

Service Level = 20
23

 =  86.96%  
 
This calculation also serves as a "ground truth" for the 
study. It demonstrates that while the practitioner 
targets a 98% reliability, the mathematical structure 
of the Normal distribution fails to account for the top 
13.04% of the demand mass (the extreme right-tail 
spikes). This 11.04% discrepancy of the Service 
Level is the direct result of using a symmetric model 
for an asymmetric, high-variance dataset. 

3.3 Result of System-Centric Simulation 
(Dynamic)  

In the system-centric simulation, we introduced the 
order quantity (𝑄𝑄) into the environment. We tested a 
range of 𝑄𝑄 values from 100 to 1,000 units to observe 
how replenishment volume compensates for the 
failing reorder point. 
 
Table 2. Service Level Recovery through Volume 

(Q) 

Order 
Quantity 

(Q) 

Actual Service 
Level 

(Dynamic) 

Performance 
Gap vs. Static 

100 87.20% +0.2% 
(Negligible) 

500 92.50% +5.5% (Partial 
Masking) 

1,000 97.80% +10.8% (Full 
Masking) 

 
As 𝑄𝑄 increases, the system's "survival" rate improves 
drastically, reaching near-target levels (97.8%) 
despite using the same "failed" reorder point (R = 
1,283).  

 
Figure 2 System Recovery via Volume Q 

This confirms the Masking Effect: a high Q ensures 
that the inventory level stays high enough for long 
enough that the system survives the next spike, even 
if the reorder trigger was technically insufficient. 
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3.4 Discussion 

The Static Stress Test demonstrated that a reorder 
point of R = 1,283 units failed to meet the 98% target, 
achieving only ≈ 87% This failure is a direct result of 
Gaussian models when applied to skewed data. The 
Normal formula treats variance as a symmetric 
"noise" around the mean, whereas in our dataset, 
variance is driven by rare, high-magnitude spikes 
($1,400–1,600$ units). Consequently, R functions as 
a "false guard," providing a sense of security while 
leaving the system exposed to the most critical 
demand events. 
However, the Dynamic Simulation provided 
empirical evidence for the Masking Effect. As shown 
in Table 2, increasing Q from 100 to 1,000 units 
bridged a service level gap of over 10%.  
At Q = 100, the system is sensitive to every failure of 
R. At Q = 1,000, the replenishment volume is so large 
that it satisfies multiple demand periods, effectively 
"skipping" the need for a frequent reorder trigger.This 
proves that the system’s survival in intermittent 
environments is a product of structural mass (volume) 
rather than trigger precision (math). 

3.4.1 Managerial Implications 

Practitioners are cautioned that a stable service level 
in a high  𝐶𝐶𝐶𝐶 environment may be a false indicator of 
robustness. The system is resilient only as long as 
spikes remain isolated. If the frequency of demand 
increases, the "hidden buffer" provided by lower 
demand days will vanish. The high service level is an 
accident of intermittency, not a result of good 
planning. For items with CV > 2.0, abandon the 
Normal formula. Use empirical percentiles calculated 
from synthetic histories. 

3.4.2 Limitations and Directions for Future 
Research  

While the present study establishes an empirical 
baseline for inventory service level decay, several 
avenues for further inquiry remain. These limitations 
provide a foundation for future cross-disciplinary 
research into stochastic inventory control: 

1) Parametric Generalization and 
Distributional Sensitivity  
This analysis utilized a non-parametric, 
trace-driven bootstrap to ensure fidelity to the 
laboratory’s historical demand profile. 

However, this approach does not account for 
the theoretical behavior of alternative 
probability density functions. Future research 
should employ a Global Sensitivity Analysis 
to evaluate the performance of the continuous 
review policy against heavy-tailed and zero-
inflated distributions—such as the 
Lognormal, Weibull, and Zero-Inflated 
Poisson (ZIP) models—to determine if the 
observed service level decay is a universal 
mathematical property of high-variance 
environments. 
 

2) Magnitude-Based Metric Analysis  
Our findings focused primarily on the Cycle 
Service Level (CSL), which measures the 
frequency of stockout events. Future 
investigations should incorporate the Fill 
Rate (FR) to quantify the magnitude of 
unsatisfied demand. Synthesizing these two 
metrics would provide a more granular view 
of how demand "lumpiness" affects total 
volume availability compared to simple event 
frequency. 
 

4. CONCLUSION 
This paper set out to stress-test the (R, Q) inventory 
policy in the context of extreme demand 
intermittency. Through a trace-driven simulation of a 
fishery diagnostic laboratory, we identified two 
critical phenomena: Mathematical Decay and the 
Masking Effect. 
Our findings yields following conclusions: 

1) Reorder points (R) based on the Normality 
Assumption are structurally incapable of 
protecting against extreme demand spikes in 
intermittent systems.. 

2) The order quantity (Q) acts as a "brute force" 
corrective mechanism. A sufficiently large Q 
can mask the mathematical failures of R, 
allowing the system to maintain high service 
levels despite using a faulty trigger. 

For practitioners in specialized service sectors, we 
recommend moving beyond "average-based" models 
when demand is intermittent. Instead of the Normal 
approximation, managers should adopt non-
parametric methods, such as using historical 
percentiles to set reorder points, or utilizing heavy-
tailed distributions (e.g., Log-Normal or Gamma) that 
better account for the "Long Tail" of demand spikes. 
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Ultimately, the 𝐶𝐶𝐶𝐶 should serve as a primary 
diagnostic tool: if 𝐶𝐶𝐶𝐶 exceeds 1.0, the Normal 
distribution should be abandoned in favor of more 
robust empirical models. 
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APPENDIX 
Phyton Code Used for Simulation 
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
 
# 1. SETUP: Input Empirical Data from Fishery Lab 
# n = 23 days, including zero-demand days and rare 

spikes 
data = np.array([0]*14 + [100, 100, 200, 200, 200, 

300, 1400, 1500, 1600]) 
 
# Calculate statistics for the Normality Assumption 
mu = np.mean(data) 
sigma = np.std(data) 
z_98 = 2.05  # Safety factor for 98% Cycle Service 

Level (CSL) 
R = mu + (z_98 * sigma) 
 
print(f"--- Theoretical Policy Setup ---") 
print(f"Mean (mu): {mu:.2f}") 
print(f"Std Dev (sigma): {sigma:.2f}") 
print(f"Calculated Reorder Point (R) for 98% CSL: 

{R:.2f}\n") 
 
# 2. TRACK A: Independent Stress Test (Static) 
num_trials = 10000 
bootstrap_samples = np.random.choice(data, 

size=num_trials, replace=True) 
static_successes = np.sum(bootstrap_samples <= R) 
static_asl = (static_successes / num_trials) * 100 
 
print(f"--- Track A: Static Test Results ---") 
print(f"Static ASL: {static_asl:.2f}%\n") 
 
# 3. TRACK B: System-Centric Simulation 

(Dynamic) 
def run_dynamic_sim(demand_data, R_point, Q_qty, 

periods=5000): 
    inventory = Q_qty  # Start with stock on hand 
    stockout_periods = 0 
    sim_demand = np.random.choice(demand_data, 

size=periods, replace=True) 
     
    for d in sim_demand: 
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        if inventory >= d: 
            inventory -= d 
        else: 
            stockout_periods += 1 
            inventory = 0  # Simplified backorder model 
         
        # Trigger replenishment 
        if inventory <= R_point: 
            inventory += Q_qty 
             
    return ((periods - stockout_periods) / periods) * 

100 
 
# Test a range of Q values 
q_values = [100, 200, 300, 400, 500, 600, 700, 800, 

900, 1000] 
dynamic_results = [] 
 
for q in q_values: 
    res = run_dynamic_sim(data, R, q) 
    dynamic_results.append(res) 
 
# 4. VISUALIZATION 
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 6)) 
 
# Plot 1: Static Distribution (Mathematical Decay) 
ax1.hist(data, bins=15, alpha=0.7, color='skyblue', 

edgecolor='black', label='Empirical Demand') 
ax1.axvline(R, color='red', linestyle='dashed', 

linewidth=2, label=f'Reorder Point R ({R:.0f})') 
ax1.set_title("Static Test: Logic Failure\n(R misses 

extreme spikes)", fontsize=13) 
ax1.set_xlabel("Units Demanded") 
ax1.set_ylabel("Frequency") 
ax1.legend() 
 
# Plot 2: Dynamic Simulation (The Masking Effect) 
ax2.plot(q_values, dynamic_results, marker='o', 

linestyle='-', color='teal', linewidth=2, 
label='Simulated ASL') 

ax2.axhline(y=98.0, color='darkgreen', linestyle=':', 
label='Target Service Level (98%)') 

ax2.axhline(y=static_asl, color='red', linestyle='--', 
label=f'Static ASL Baseline ({static_asl:.1f}%)') 

ax2.set_title("Dynamic Test: The Masking 
Effect\n(System recovery via volume Q)", 
fontsize=13) 

ax2.set_xlabel("Order Quantity (Q)") 
ax2.set_ylabel("Actual Service Level (%)") 
ax2.set_ylim(min(static_asl, min(dynamic_results)) - 

5, 100) 
ax2.grid(True, linestyle=':', alpha=0.6) 
ax2.legend(loc='lower right') 
 
plt.tight_layout() 
plt.show() 
 
# --- Print Results  --- 
print(f"{'Order Quantity (Q)':<20} | {'Dynamic ASL 

(%)':<20} | {'Improvement vs Static':<25}") 
print("-" * 70) 
 
for q, dynamic_asl in zip(q_values, dynamic_results): 
    improvement = dynamic_asl - static_asl 
    print(f"{q:<20} | {dynamic_asl:<20.2f} | 

{improvement:<+25.2f}%") 
 
# Summary Analysis 
print("\n--- Key Finding ---") 
max_asl = max(dynamic_results) 
masking_power = max_asl - static_asl 
print(f"The 'Masking Effect' of Q={max(q_values)} 

recovered {masking_power:.2f}% of the service 
level") 

print(f"lost by the faulty reorder point (R).") 
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