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Abstract

This paper investigates the reliability of the continuous-review (R, Q) inventory policy in environments
characterized by extreme demand intermittency. Using a 23-period demand trace from a fishery diagnostic
laboratory with a Coefficient of Variation (CV) of 2.08 and a 61% zero-demand rate, we stress-test the classical
"Normality Assumption.”" While reorder points (R) are traditionally calculated using Gaussian safety stock
formulas to meet target service levels, we hypothesize that this approach suffers from Mathematical Decay
when subjected to skewed, lumpy demand. Using a dual-track methodology, we first perform a Static Stress Test
(non-parametric bootstrap) to isolate the reorder point. Results show a significant service-level deficit, where
the "Normal" R fails to cover empirical demand spikes, falling nearly 11% below the 98% target. We then
conduct a Dynamic System Simulation to observe the interaction between $R$ and the order quantity (Q). This
reveal a phenomenon we define as the "Masking Effect”: as Q increases, the system’s service level recovers to
near-target levels despite using the same faulty reorder trigger.The study concludes that in intermittent
environments, the reorder point is a decoupled and unreliable trigger, system survival depends almost entirely
on the "brute force" of the replenishment volume. These findings suggest that practitioners in specialized
sectors should move away from parametric safety stock math in favor of percentile-based empirical triggers to
avoid the hidden operational risks created by the masking effect.
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INTRODUCTION

The Stochastic Economic Order Quantity (EOQ) is a
fundamental framework in inventory management,
designed to balance ordering and holding costs. A
nearly universal practice in both academic and
industrial applications of this model is the Normality
Assumption: the belief that demand during lead time
follows a Normal distribution. This choice is favored
for its mathematical simplicity and the theoretical
backing of the Central Limit Theorem.

However, this "bell curve" logic assumes a level of
stability and symmetry that is often absent in
specialized service sectors. In industries such as
fishery diagnostic laboratories, demand is frequently
intermittent and highly skewed. These environments
are characterized by "lumpy" demand—Ilong periods
of zero activity interrupted by rare, high-magnitude
spikes.

https://ejurnal.ulbi.ac.id/index.php/logistik

When the Coefficient of Variation (CV)—the ratio of
the standard deviation to the mean—exceeds a certain
threshold, the Normal distribution begins to fail.
Specifically, it starts to allocate probability to
"negative demand" and underestimates the "Long
Tail" where extreme spikes occur.

This paper conducts a stress test on continuous review
model using real-world data from a fishery lab with a
CV of 2.08. We evaluate the model's performance
through two lenses:

1) A Static Stress Test: To isolate the
mathematical failure of the Normal formula
in predicting spikes. This test demonstrates
how the R formula fails to provide the target
service level when treated as a standalone
trigger

2) A Dynamic Simulation (System-Centric
Analysis): To observe how the interaction
between the reorder point and the order
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quantity (Q) allows operational flow and
"quiet periods" might hide underlying model
weaknesses.

While the limitations of the Normal distribution were
identified in foundational works such as Hadley and
Whitin (1963) and Silver and Peterson (1985), many
modern practitioners still rely on these basic
formulations. Recent literature has extensively
addressed the challenges of intermittent demand. Tian
et al. (2021) introduced a Markov-combined method
that explicitly models the transition between zero and
non-zero states, demonstrating superior accuracy
over traditional Croston variants in retail
environments. Similarly, Sarlo et al. (2025) utilized
score-driven models to dynamically adjust inventory
targets, proving that static parametric assumptions
fail to maintain target service levels in volatile
datasets.

The debate between parametric and non-parametric
approaches remains active. Zhang et al. (2024)
explored transformer neural networks for
intermittency, highlighting that while machine
learning offers precision, it requires vast datasets
often unavailable in specialized sectors like fishery.
Consequently, simulation-based approaches using
synthetic data, as discussed by Babai et al. (2022)
regarding temporal aggregation, remain a vital tool
for determining robust safety stocks in data-scarce
environments. Our study contributes to this stream by
quantifying the specific 'masking effect' of
intermittency on standard service level metrics.

2. METHODOLOGY

This study utilizes a Trace-Driven Simulation
approach. Rather than fitting a distribution to the data,
we used the empirical demand observations from a
real-world fishery lab to calculate the Empirical
Percentiles. This allowed us to observe the model's
failure in a "clean" settings ensuring that any
performance decay is attributed to the logic of the
policy itself rather than distribution-fitting errors.

2.1 The (R, Q) Policy Framework

We utilize the Stochastic EOQ, formally known as the
(R, Q) policy, based on the classical derivations by
Hadley and Whitin (1963). In this system, a fixed
order quantity (Q) is triggered whenever the
inventory position drops to or below the reorder point

(R).
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2.2 Reorder Point Calculation

Under the Normality Assumption, the reorder point
(R) is calculated using the mean demand during lead
time (p;) and a safety stock buffer:

R=p, +(Z op)

In this study, we set a target cycle service level of
98%, which corresponds to a safety factor Z = 2.05.
We use the empirical mean and standard deviation
from the fishery lab dataset to calculate this baseline
R.

2.3 Simulation Design: Input, Process, Output

The simulation is designed to isolate how the
Coefficient of Variation (CV) affects the accuracy of
the R value calculated above.

1. Input
The 23-period demand trace from the fishery
laboratory. This data serves as the "empirical
truth" for the simulation. In this case, we
resample the data without distribution fitting
approach.

Table 1. Demand of Fishery Laboratory

Date Demand
01/04/2023 0
01/05/2023
01/06/2023
01/09/2023
01/10/2023
01/01/2024
01/02/2024
01/03/2024
01/04/2024
01/05/2024
01/06/2024
01/07/2024
01/09/2024
01/10/2024
01/03/2023 100
01/11/2024 100

OO O|O|O Q| |QC |||
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Date Demand
01/08/2023 200
01/11/2023 200
01/08/2024 200
01/01/2025 300
01/07/2023 1400
01/12/2023 1500
01/12/2024 1600

Source: Fishery Lab (2025)

2. Process (Dual-Track)

a) Independent Stress Test (Static)

We perform 10,000 resampling trials
(with replacement). Each trial is an
independent event where the sampled
demand is compared directly against the
calculated R. If the sampled demand
d; > R the period is marked as a
"Failure.”

b) System-Centric Simulation (Dynamic)
We simulate a continuous inventory flow
where unsold stock carries over to the
next period. e test a range of Q values
(100 to 1,000 units). This reveals how a
large Q can prevent stockouts even when
R is triggered late, effectively "masking"
the formulaic decay identified in point
(a).

3. Output

The primary output is the Actual Service

Level, calculated as the percentage of periods

where demand was fully satisfied.

To ensure replicability, the simulation was
implemented in Python wusing a trace-driven
resampling algorithm. The core logic of the system-
centric simulation is provided in Appendix. The
algorithm utilizes the NumPy library for random
selection with replacement and Matplotlib for
visualizing inventory flow across 10,000 iterations

2.4 Actual Service Level

Since the static test resamples the 23-day trace, the
long-term service level must converge to:

Count of days where Demand<R
Total Days (23)

Actual Service Level =
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This provides a "sanity check" that allows for a
transparent comparison between the complex Monte
Carlo output and the raw data.

3. RESULT AND DISCUSSION

This section presents the numerical findings of the
study, comparing the theoretical assumptions of the
Normal distribution against the empirical reality of
the fishery lab demand.

3.1 Step-by-Step Numerical Analysis

To establish the baseline, we apply the standard
stochastic EOQ safety stock formula. The lead time is
assumed to be one period (L = 1). The demand of the
item is as follows:

1) Descriptive Statistics The 23-period dataset
yielded the following parameters:
a) Mean (p) =243.5 unit
b) Standard Deviation () = 506.2 units

c) Coefficient of Variation (E) -
506.2/243.5 =2.08

2) Normal Safety Stock Calculation Targeting a
98% Service Level, the corresponding Z-
score is 2.05.

SSvormar =Z -0 = 2.05-506.2 =
1,039.5 units

3) Determination of Reorder Point (ROP)
ROP = u+ SS =243.5+ 10395 =
1,283 unit

3.2 Result of Independent Stress Test (Static)
The simulation revealed that the Actual Service Level
(ASL) was significantly lower than the 98% target.
Because the fishery lab data contains spikes of 1,400,
1,500, and 1,600 units, the "Normal" R failed to cover
the right-hand tail of the empirical distribution.

e Target Service Level: 98.0%

e Actual Static Service Level: 87.29%
(Calculated as the probability that demand
<1,283)

e Observation: The Normality Assumption
failed to account for the "Long Tail" of the
data, resulting in 11% service level deficit.
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Figure 1 Reorder Points Misses Extreme Spikes

The validity of the simulation can also be verified
through a direct empirical calculation. Because the
Independent Stress Test utilizes resampling with
replacement from the historical 23-period trace, the
resulting Service Level must mathematically
converge to the frequency of "Success" periods
within the original dataset.
Based on the Normal model's Reorder Point (R =
1,283), the historical data is categorized as follows:
a) Total Observations (n): 23 periods
b) Failure Events (D > R) is equal to
3 observations, when the demand is 1,400,
1,500, and 1,600 unit spikes
c) Success Events (D < R) where demand is
less or equal to the reorder point is equal to
20 observations

The Actual Service Level is therefore calculated as:
Count of days where Demand<R
Total Days (23)

Service Level = % = 86.96%

Service Level =

This calculation also serves as a "ground truth" for the
study. It demonstrates that while the practitioner
targets a 98% reliability, the mathematical structure
of the Normal distribution fails to account for the top
13.04% of the demand mass (the extreme right-tail
spikes). This 11.04% discrepancy of the Service
Level is the direct result of using a symmetric model
for an asymmetric, high-variance dataset.

https://ejurnal.ulbi.ac.id/index.php/logistik

3.3 Result of System-Centric Simulation
(Dynamic)

In the system-centric simulation, we introduced the

order quantity (Q) into the environment. We tested a

range of Q values from 100 to 1,000 units to observe

how replenishment volume compensates for the

failing reorder point.

Table 2. Service Level Recovery through Volume

Q
Orde.r Actual Service Performance
Q“(aél)tlty (D;J:::::ic) Gap vs. Static
109 87.20% (Nigﬁzg(}/&e)
500 92.50% +5 I\Z(; gnagial
1,000 97.80% +10.8% (Full

Masking)

As Q increases, the system's "survival" rate improves
drastically, reaching near-target levels (97.8%)
despite using the same "failed" reorder point (R =
1,283).

100.0

Actual Service Level (%)

—8— Simulated ASL
«-+ Target Service Level (98%)
——- Static ASL Baseline (87.3%)

T T T T T
200 400 600 800 1000
Order Quantity (Q)

Figure 2 System Recovery via Volume Q

This confirms the Masking Effect: a high Q ensures
that the inventory level stays high enough for long
enough that the system survives the next spike, even
if the reorder trigger was technically insufficient.

Halaman | 132


https://ejurnal.ulbi.ac.id/index.php/logistik

Jurnal Logistik Bisnis, Vol. 15, No.2, Desember 2025

3.4 Discussion

The Static Stress Test demonstrated that a reorder
point of R = 1,283 units failed to meet the 98% target,
achieving only = 87% This failure is a direct result of
Gaussian models when applied to skewed data. The
Normal formula treats variance as a symmetric
"noise" around the mean, whereas in our dataset,
variance is driven by rare, high-magnitude spikes
($1,400-1,6008 units). Consequently, R functions as
a "false guard," providing a sense of security while
leaving the system exposed to the most critical
demand events.

However, the Dynamic Simulation provided
empirical evidence for the Masking Effect. As shown
in Table 2, increasing Q from 100 to 1,000 units
bridged a service level gap of over 10%.

At Q =100, the system is sensitive to every failure of
R. At Q= 1,000, the replenishment volume is so large
that it satisfies multiple demand periods, effectively
"skipping" the need for a frequent reorder trigger. This
proves that the system’s survival in intermittent
environments is a product of structural mass (volume)
rather than trigger precision (math).

3.4.1 Managerial Implications

Practitioners are cautioned that a stable service level
in a high CV environment may be a false indicator of
robustness. The system is resilient only as long as
spikes remain isolated. If the frequency of demand
increases, the "hidden buffer" provided by lower
demand days will vanish. The high service level is an
accident of intermittency, not a result of good
planning. For items with CV > 2.0, abandon the
Normal formula. Use empirical percentiles calculated
from synthetic histories.

3.4.2 Limitations and Directions for Future
Research

While the present study establishes an empirical
baseline for inventory service level decay, several
avenues for further inquiry remain. These limitations
provide a foundation for future cross-disciplinary
research into stochastic inventory control:
1) Parametric Generalization and
Distributional Sensitivity
This analysis utilized a non-parametric,
trace-driven bootstrap to ensure fidelity to the
laboratory’s  historical demand profile.
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However, this approach does not account for
the theoretical behavior of alternative
probability density functions. Future research
should employ a Global Sensitivity Analysis
to evaluate the performance of the continuous
review policy against heavy-tailed and zero-
inflated  distributions—such  as  the
Lognormal, Weibull, and Zero-Inflated
Poisson (ZIP) models—to determine if the
observed service level decay is a universal
mathematical property of high-variance
environments.

2) Magnitude-Based Metric Analysis

Our findings focused primarily on the Cycle
Service Level (CSL), which measures the
frequency of stockout events. Future
investigations should incorporate the Fill
Rate (FR) to quantify the magnitude of
unsatisfied demand. Synthesizing these two
metrics would provide a more granular view
of how demand "lumpiness" affects total
volume availability compared to simple event
frequency.

4. CONCLUSION

This paper set out to stress-test the (R, Q) inventory
policy in the context of extreme demand
intermittency. Through a trace-driven simulation of a
fishery diagnostic laboratory, we identified two
critical phenomena: Mathematical Decay and the
Masking Effect.

Our findings yields following conclusions:

1) Reorder points (R) based on the Normality
Assumption are structurally incapable of
protecting against extreme demand spikes in
intermittent systems..

2) The order quantity (Q) acts as a "brute force"
corrective mechanism. A sufficiently large Q
can mask the mathematical failures of R,
allowing the system to maintain high service
levels despite using a faulty trigger.

For practitioners in specialized service sectors, we
recommend moving beyond "average-based" models
when demand is intermittent. Instead of the Normal
approximation, managers should adopt non-
parametric methods, such as using historical
percentiles to set reorder points, or utilizing heavy-
tailed distributions (e.g., Log-Normal or Gamma) that
better account for the "Long Tail" of demand spikes.
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Ultimately, the CV should serve as a primary
diagnostic tool: if CV exceeds 1.0, the Normal
distribution should be abandoned in favor of more
robust empirical models.
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APPENDIX

Phyton Code Used for Simulation
import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

# 1. SETUP: Input Empirical Data from Fishery Lab

# n = 23 days, including zero-demand days and rare
spikes

data = np.array([0]*14 + [100, 100, 200, 200, 200,
300, 1400, 1500, 1600])

# Calculate statistics for the Normality Assumption

mu = np.mean(data)

sigma = np.std(data)

z 98 = 2.05 # Safety factor for 98% Cycle Service
Level (CSL)

R=mu+ (z_98 * sigma)

print(f"--- Theoretical Policy Setup ---")

print(f"Mean (mu): {mu:.2f}")

print(f'Std Dev (sigma): {sigma:.2f}")

print(f"Calculated Reorder Point (R) for 98% CSL:
{R:.2f}\n")

# 2. TRACK A: Independent Stress Test (Static)

num_trials = 10000

bootstrap_samples = np.random.choice(data,
size=num_trials, replace=True)

static_successes = np.sum(bootstrap samples <= R)

static_asl = (static_successes / num_trials) * 100

print(f'--- Track A: Static Test Results ---")
print(f"'Static ASL: {static_asl:.2f}%\n")

# 3. TRACK B: System-Centric Simulation
(Dynamic)
defrun_dynamic_sim(demand data, R_point, Q_qty,
periods=5000):
inventory = Q qty # Start with stock on hand
stockout periods =0

sim_demand = np.random.choice(demand data,
size=periods, replace=True)

for d in sim_demand:
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if inventory >=d:
inventory -= d
else:
stockout_periods += 1
inventory = 0 # Simplified backorder model

# Trigger replenishment
if inventory <= R_point:
inventory += Q_qty

return ((periods - stockout periods) / periods) *
100

# Test a range of Q values

q_values = [100, 200, 300, 400, 500, 600, 700, 800,
900, 1000]

dynamic_results = []

for q in q_values:
res = run_dynamic_sim(data, R, q)
dynamic_results.append(res)

#4. VISUALIZATION
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 6))

# Plot 1: Static Distribution (Mathematical Decay)
ax1.hist(data, bins=15, alpha=0.7, color='skyblue',
edgecolor="black’, label="Empirical Demand')

axl.axvline(R,  color='red, linestyle='dashed',
linewidth=2, label=f'Reorder Point R ({R:.0f})")

axl.set_title("Static Test: Logic Failure\n(R misses
extreme spikes)", fontsize=13)

axl.set xlabel("Units Demanded")
axl.set_ylabel("Frequency")
ax1.legend()

# Plot 2: Dynamic Simulation (The Masking Effect)

ax2.plot(q_values, dynamic results, marker='0,
linestyle="-, color="teal', linewidth=2,
label="Simulated ASL")

ax2.axhline(y=98.0, color='darkgreen', linestyle="",
label="Target Service Level (98%)")

ax2.axhline(y=static_asl, color="red', linestyle='--,
label=f'Static ASL Baseline ({static_asl:.1{}%)")
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ax2.set_title("Dynamic  Test: The  Masking
Effect\n(System recovery via volume Q)",
fontsize=13)

ax2.set_xlabel("Order Quantity (Q)")

ax2.set_ylabel("Actual Service Level (%)")

ax2.set_ylim(min(static_asl, min(dynamic_results)) -
5, 100)

ax2.grid(True, linestyle="", alpha=0.6)

ax2.legend(loc="lower right")

plt.tight layout()
plt.show()

# --- Print Results ---

print(f' {'Order Quantity (Q)":<20} | {'Dynamic ASL
(%)":<20} | {'Improvement vs Static':<25}")

print("-" * 70)

for q, dynamic_asl in zip(q_values, dynamic_results):
improvement = dynamic_asl - static_asl
print(f"{q:<20} |  {dynamic asl:<20.2f} |
{improvement:<+25.2f}%")

# Summary Analysis

print("\n--- Key Finding ---")

max_asl = max(dynamic_results)

masking power = max_asl - static_asl

print(f'"The 'Masking Effect' of Q={max(q values)}
recovered {masking power:.2f}% of the service
level")

print(f"lost by the faulty reorder point (R).")
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